Multi-robot Simultaneous Localization and Mapping using Particle Filters
نویسنده
چکیده
This paper describes an on-line algorithm for multirobot simultaneous localization and mapping (SLAM). We take as our starting point the single-robot Rao-Blackwellized particle filter described in [1] and make two key generalizations. First, we extend the particle filter to handle multi-robot SLAM problems in which the initial pose of the robots is known (such as occurs when all robots start from the same location). Second, we introduce an approximation to solve the more general problem in which the initial pose of robots is not known a priori (such as occurs when the robots start from widely separated locations). In this latter case, we assume that pairs of robots will eventually ‘bump into’ one another, thereby determining their relative pose. We use this relative pose to initialize the filter, and combine the subsequent (and prior) observations from both robots into a common map. This algorithm has been experimentally validated using data from a team of four robots equipped with odometry and scanning laser range-finders.
منابع مشابه
Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملEffects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کاملNovel Rao-Blackwellized Particle Filter for Mobile Robot SLAM Using Monocular Vision
This paper presents the novel Rao-Blackwellised particle filter (RBPF) for mobile robot simultaneous localization and mapping (SLAM) using monocular vision. The particle filter is combined with unscented Kalman filter (UKF) to extending the path posterior by sampling new poses that integrate the current observation which drastically reduces the uncertainty about the robot pose. The landmark pos...
متن کاملSimultaneous Localization and Mapping Using Rao-Blackwellized Particle Filters in Multi Robot Systems
In this paper we investigate the problem of Simultaneous Localization and Mapping (SLAM) for a multi robot system. Relaxing some assumptions that characterize related work we propose an application of Rao-Blackwellized Particle Filters (RBPF) for the purpose of cooperatively estimating SLAM posterior. We consider a realistic setup in which the robots start from unknown initial poses (relative l...
متن کاملNovel Mobile Robot Simultaneous Loclization and Mapping Using Rao-Blackwellised Particle Filter
This paper presents the novel method of mobile robot simultaneous localization and mapping (SLAM), which is implemented by using the Rao-Blackwellised particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment. The particle filter is combined with unscented Kalman filter (UKF) to extending the path posterior by sampling new poses that integrate the current ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005